Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Liquid flow batteries have potential to achieve high energy efficiency as a large-scale energy storage system. However, the ion exchange membranes (IEMs) currently used in flow batteries do not have high ion selectivity and conductance at the same time, owing to the trade-off between ionic membrane resistance and ion selectivity. Here, we report a rationally designed sulfonated aromatic polymer membrane which can greatly mitigate the trade-off limitation and achieve high performance vanadium RFB. Small-angle X-ray scattering studies and density functional theory calculations indicated that the narrowly distributed aqueous ionic domain of just the right width (<7 Å) and the strong hydrogen bond interaction of vanadium species with a unique polymer side chain structure play a key role in improving the ion selectivity. Our systematic studies of the polymer structures, morphologies, and transport properties provide valuable insight that can aid in elucidating the structure–property relationship of IEMs and in establishing design criteria for the development of high-performance membranes.more » « less
-
Multi-functional membranes with high permeance and selectivity that can mimic nature's designs have tremendous industrial and bio-medical applications. Here, we report a novel concept of a 3D nanometer (nm)-thin membrane that can overcome the shortcomings of conventional membrane structures. Our 3D membrane is composed of two three-dimensionally interwoven channels that are separated by a continuous nm-thin amorphous TiO 2 layer. This 3D architecture dramatically increases the surface area by 6000 times, coupled with an ultra-short diffusion distance through the 2 – 4 nm-thin selective layer that allows for ultrafast gas and water transport, ∼900 l m −2 h −1 bar −1 . The 3D membrane also exhibits a very high ion rejection ( R ∼ 100% for potassium ferricyanide) due to the combined size- and charge-based exclusion mechanisms. The combination of high ion rejection and ultrafast permeation makes our 3DM superior to the state-of-the-art high-flux membranes whose performances are limited by the flux-rejection tradeoff. Furthermore, its ultimate Li + selectivity over polysulfide or gas can potentially solve major technical challenges in energy storage applications, such as lithium – sulfur or lithium – O 2 batteries.more » « less
-
Abstract A carbon nanotubes (CNTs) reinforced Nafion membrane (CNT/N) with reduced interfacial resistance was prepared and served as a promising ion exchange membrane for vanadium redox flow batteries (VRFBs). The reinforcement of CNT effectively enhanced the tensile properties of Nafion membranes. The electrochemical properties of CNT/N membrane were analyzed by electrochemical impedance spectroscopy (EIS) and fitted with an analytical model to investigate the ionic and interfacial resistances. The EIS measurement reveals that the exposed CNT on the composite membrane surface significantly reduced the interfacial resistance of the membrane. The VRFB single cell performance of the CNT/N shows higher voltage efficiency (93% vs 89%) and energy efficiency (86% vs 83%) than recast Nafion at a current density of 40 mA cm−2. The cycling stability measurement showed that the discharge capacity retention of the VRFB cell equipped with CNT/N was greatly enhanced. The results suggest that the incorporation of CNT in ion exchange membrane is an effective approach for achieving lower membrane bulky and interfacial resistance, and thus, improving capacity retention, voltage, and energy efficiency.more » « less
-
Abstract Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.more » « less
An official website of the United States government
